Datasets for Autonomous Driving
Title: Datasets for Autonomous Driving
DNr: Berzelius-2024-323
Project Type: LiU Berzelius
Principal Investigator: Lennart Svensson <lennart.svensson@chalmers.se>
Affiliation: Chalmers tekniska högskola
Duration: 2024-09-28 – 2025-04-01
Classification: 10207
Keywords:

Abstract

Deep learning has become a cornerstone in surround sensing systems in autonomous vehicles, and a core component of creating safe and robust autonomous driving is the use of high-quality data. In this project, several novel types of neural networks are to be tried for different tasks in such surround sensing systems, and evaluated for different open datasets. The primary research questions revolve around processing videos in order to capture the dynamics of the scene or to improve performance for tasks typically tackled with single images. The project is a collaboration between members at different universities: Lund, Linköping, and Chalmers. Each member is part of another project with GPU hours, but we apply for this project to have a common data storage and avoid storing the same dataset multiple times in different projects, and for sharing certain files. Compute is provided by the following projects and corresponding PIs: Berzelius-2024-322 - Lars Hammarstrand Berzelius-2024-144 - Adam Lilja Berzelius-2023-365 - Michael Felsberg This project is a continuation of Berzelius-2024-51.