Computational Modelling of Organic Materials and Devices
Title: Computational Modelling of Organic Materials and Devices
DNr: NAISS 2023/6-370
Project Type: NAISS Medium Storage
Principal Investigator: Igor Zozoulenko <>
Affiliation: Linköpings universitet
Duration: 2024-01-08 – 2025-01-01
Classification: 10304 10403 10406


Conducting conjugated polymers represent the material of choice for the majority of applications for organic- and bioelectronics. This is because many polymers have excellent thermal and air stability, high electrical conductivity, and well-developed and relatively simple synthesis technology that allows a large-scale manufacturing. They are also biocompatible and open for transport of biologically active ions. Recently, novel composite cellulose-polymer based materials demonstrated their potential for effective energy storage applications. Computational studies of these materials are in critical demand because the lack of the theoretical understanding of their material properties represents the major obstacle for further improvement of the device performance and material functionality. The aim of the proposal is to perform quantum-mechanical and Molecular Dynamics studies of conducting polymers and composite cellulose materials, as well as to model devices based on these materials to answer fundamental questions concerning the electronic structure, morphology, polymerization and crystallization kinetics, porosity, ion diffusion, catalytic action, as well as explore their potential for energy regeneration and storage. The important aspect of this project is that our research provides guidance to the experimental activity of the Laboratory of Organic Electronics at Linköping University. The present project is supported by multiple funding sources: KAW, WWSC, EU, WALP.