Computational Modelling of Novel Materials and Devices for Organic- and Bioelectronics and Energy Storage
Title: Computational Modelling of Novel Materials and Devices for Organic- and Bioelectronics and Energy Storage
DNr: SNIC 2022/3-9
Project Type: SNIC Large Compute
Principal Investigator: Igor Zozoulenko <igor.zozoulenko@liu.se>
Affiliation: Linköpings universitet
Duration: 2023-01-01 – 2024-01-01
Classification: 10403 10304 10406
Homepage: http://liu.se/loe
Keywords:

Abstract

Conducting conjugated polymers and biopolymers such as nanocellulose represent the material of choice for the majority of applications for organic- and bioelectronics. This is because many polymers have excellent thermal and air stability, high electrical conductivity, and well-developed and relatively simple synthesis technology that allows a large-scale manufacturing including printing. They are also biocompatible and open for transport of biologically active ions. Recently, novel cellulose-polymer composites and lignin-based materials demonstrated their potential for effective energy storage applications. Computational studies of these materials are in critical demand because the lack of theoretical understanding of their material properties represents the major obstacle for further improvement of the device performance and material functionality. The aim of the proposal is to perform Quantum-Mechanical and Molecular Dynamics studies of conducting polymers and composite cellulose materials, as well as to model devices based on these materials to answer fundamental questions concerning the electronic structure, morphology, charge carrier transport, as well as to explore their potential for energy generation and storage. A crucial aspect of this project is that our research provides guidance to the experimental activities of the Laboratory of Organic Electronics at Linköping University, as well as to other research groups in Sweden (at Chalmers and KTH). The present project is supported by multiple funding sources: KAW (Knut och Alice Wallenbergs Stiftelse), EU, Wallenberg Wood Science Center, VINNOVA. The computational time is intended for the whole group of Theory and Modelling at the Laboratory of Organic Electronics, Linköping University which currently includes 7 members (1 professor, 1 assistant professor, 3 postdocs, 3 PhD students), all of whom are heavily involved in large-scale calculations.