Influence of stress on transport properties of thermoelectric materials
Title: Influence of stress on transport properties of thermoelectric materials
DNr: SNIC 2021/5-438
Project Type: SNIC Medium Compute
Principal Investigator: Denis Music <denis.music@mau.se>
Affiliation: Malmö universitet
Duration: 2021-10-01 – 2022-10-01
Classification: 10304
Homepage: http://forskning.mah.se/en/id/al3932
Keywords:

Abstract

Living in the ever-changing world with a constant hunger for energy and other resources requires a wide-ranging strategy. Many aspects must be encompassed. Thermoelectric devices directly convert heat into electricity without greenhouse gas emission enabling applications for off-grid energy generation and waste heat extraction (see a selection of the publications from the applicant: Appl. Phys. Lett. 109, 223903 (2016) and J. Appl. Phys. 120, 045104 (2016)), a welcoming alternative in energy production. Since their efficiency is defined by transport properties, mechanical strain can drastically affect the performance, which is a less investigated feature or even completely ignored in modern design efforts. Furthermore, these devices are subjected to abrupt thermal gradients giving rise to thermal shock and fatigue as well as oxidation. Hence, this computational project is dedicated towards systematic studies of intermetallic and metallic-like thermoelectric systems in terms of their transport properties (the Seebeck coefficient, electrical conductivity, thermal conductivity) as a function of strain using density functional theory and non-equilibrium Green’s functions. In the first round of this computational project, material screening was performed, including Mg3Bi2, tellurides, half-Heusler alloys, and skutterudites. It seems that half-Heusler alloys and Mg3Bi2 are the most promising system for the mechano-transport response. More details will be carried out in the second year of the project, especially merging the theoretical efforts with experiments (important feedback loops). The Seebeck coefficient will we obtained from the Boltzmann transport equation at equilibrium and a stress of experimental interest. Variation in composition and structure as well as temperature dependence will also be tackled. It is expected that the results obtained herein will be used to increase the efficiency of thermoelectric devices by manipulating intrinsic stresses.