Atomic-scale simulation of finite temperature thermodynamic properties of materials
Title: Atomic-scale simulation of finite temperature thermodynamic properties of materials
SNIC Project: SNIC 2021/5-281
Project Type: SNIC Medium Compute
Principal Investigator: Malin Selleby <>
Affiliation: Kungliga Tekniska högskolan
Duration: 2021-06-01 – 2022-06-01
Classification: 20506 20502 10304


The CALPHAD method is a very powerful approach to fully describe the thermodynamic properties of different materials. In this method, model parameters are fitted to experimental data to develop databases which may then easily be used by industry or academia for material design and property prediction. In the absence of experimental data due to difficulty in measurements or metastable systems, the ab-initio methods are helpful tools to calculate and provide thermodynamic properties required for CALPHAD modelling. In addition, in some systems different experimental measurements may contradict among which selecting the reliable data is difficult. Ab-initio data can provide strong theoretical support for data selection in such cases. Since the main interest in metallurgical processes is focused on phase transformations occurring at high temperatures, the DFT methods that just provide data at 0 K are of limited use in CALPHAD modelling. On the other hand, the methods that provide thermodynamic data up to the melting point can provide a significant help in filling the gap of missing data. The aim of this project is to model the different contributions (e.g. magnetic, ordering, electronic, harmonic, anharmonic) to the free energy of the materials by using DFT data. Modelling thermodynamic properties of materials by DFT methods is a good way to combine the first principle methods and CALPHAD modelling as a promising approach for practical use of basic physics in engineering.