Solar Energy Conversion and Catalysis Calculations
Title: Solar Energy Conversion and Catalysis Calculations
SNIC Project: SNIC 2021/5-220
Project Type: SNIC Medium Compute
Principal Investigator: Petter Persson <>
Affiliation: Lunds universitet
Duration: 2021-05-01 – 2022-05-01
Classification: 10407 10402 10403


First principles calculations of molecules and materials will be conducted on advanced solar energy conversion processes, including dye-sensitized solar cells, artificial photosynthesis, and organic solar cells. The complexity of these systems, both in terms in molecular structure (supramolecular and nanostructured materials) and function (photoinduced processes involving excited states), makes it vital to use high-performance computing facilities for accurate computational studies. The ambition here is firstly to provide a better understanding of how solar energy conversion systems function on the molecular level, and secondly to use accurate calculations with predictive capability to guide the search for more efficient molecular components in such systems. We mainly use Density Functional Theory (DFT) and time-dependent DFT (TD-DFT) calculations, complemented with e.g. Reactive Force Field methods (ReaxFF) as well as high level ab initio methods. A. Excited State Evolution of Light-harvesting molecules A1. Excited states of molecular systems will be studied quantum chemically using first principles (time-dependent DFT and multi-reference ab initio) methods. Focus areas include excitation energies and potential energy surfaces (PESs) of dye molecules to predict the structure of excited state deactivation pathways and charge-separation. Ab initio molecular dynamics (AIMD) will be added to generate both structural and electronic reorganizations. B. Structural and Electronic Properties of Dye-Sensitized Nanocrystals The structure and stability of metal oxide nanocrystals, e.g. TiO2, will be investigated using a combination of quantum chemical structure optimizations and molecular dynamics simulations on realistic atomistic models in the 1 - 10 nm size range. Electronic properties, will be calculated e.g. at the DFT and TD-DFT levels of theory for oxide and III-V semiconducting nanocrystalline materials. B1. Structural stability of dye-nanocrystal interfaces: Study binding strengths of anchor groups, binding ligands, and dyes to metal oxide substrates. Investigate bi- and tri-podal anchors with large footprints from Galoppini. B2. Interfacial electronic structure: Investigate how to improve the energy matching of the ground and excited states of dyes to the substrate band structure in DSSCs. Suitable molecules e.g. organic polycyclic aromatic molecules and metal complexes have been selected for accurate calculations. B3. Surface electron transfer: Predict heterogeneous electron transfer (ET) rates from calculated interfacial electronic coupling strengths. Elucidate how the ET rate is influenced by various anchor and spacer groups. This requires use of larger cluster models, say (TiO2)n with n>100. C. Heterogeneous interfaces and catalysis A multi-scale combination of quantum chemical calculations and molecular dynamics simulations will be applied to studies of molecular functionalization of metal oxide substrates and heterogeneous catalysis on metal oxide substrates such as TiO2. D. A further direction as part of the KAW-funded SOLA project concerns multi-scale of complex organic film morphologies and formation processes. We have identified opportunities to study bimolecular quenching reactions at variable concentrations as a stepping-stone to couple information about complex morphology with molecular electronic structure properties. This project continues and expands previous SNIC project on triolith and aurora (2019/5-220)