High ionic conductivity in new glassy material for the next generation solid state Li-ion batteries
Title: High ionic conductivity in new glassy material for the next generation solid state Li-ion batteries
SNIC Project: SNIC 2021/22-215
Project Type: SNIC Small Compute
Principal Investigator: Raquel Lizarraga <raqli@kth.se>
Affiliation: Kungliga Tekniska högskolan
Duration: 2021-03-17 – 2022-04-01
Classification: 10304
Keywords:

Abstract

In order to achieve UN sustainability goals, a transition to a sustainable energy system is required. Today, the most promising energy storage technology to enable the sustainable use of clean and renewable energy sources is considered to be the Li-ion batteries (LIB)s. All-solid state LIBs offer a promising solution. The challenge is however that solid-state electrolytes have poor ionic conductivity. This poor ionic conductivity severely constrains the LIB’s performance. Evidence suggests that certain Li- and Na-based glasses may display high conductivity, comparable to liquid electrolytes. The primary objective of the current research program is to develop a novel multi-scale approach that combines a state-of-art ab-initio method to model the amorphous structure of glasses, the stochastic quenching, together with ab-initio molecular dynamics to study ionic transport mechanisms in glasses. By using this powerful combination of methods we will identify those features of the amorphous structure that enhance the performance of a glassy medium, which is crucial to lay the basis for a sustainable development of the next generation of solid state Li-ion batteries. The method will use provide with a reliable way to overcome the challenges to characterize glasses. Another powerful outcome of this research is to open up the potential of Na-based batteries, which provides with a solution to the availability and extraction of Li. Finally, this work opens a new avenue of research on amorphous materials for solid-state ionics. This project is partially funded by the Carl Tryggers Stiftelse (CTS) , project number 19:212, that runs until September 2022. The PI of the present application is also the PI of the CTS project.