Accelerated ab initio molecular dynamics: plastic deformation in ceramics
Title: Accelerated ab initio molecular dynamics: plastic deformation in ceramics
SNIC Project: SNIC 2020/14-86
Project Type: SNIC Small Storage
Principal Investigator: Davide Sangiovanni <>
Affiliation: Linköpings universitet
Duration: 2020-12-05 – 2022-01-01
Classification: 10304


Density functional molecular dynamics is used to identify fundamental atomistic and electronic mechanisms that underlie brittleness and tougheness in transition-metal nitride superlattices as a function of temperature. The project is a theoretical and experimental collaboration between LiU and TU Wien. Acknowledged financial support: VINN Excellence Center Functional Nanoscale Materials (FunMat-2) Grant 2016–05156, Olle Engkvist Foundation, Austrian Academy of Sciences, ‎ÖAW, via the DOC fellowship and KUWI grant from TU Wien. During 2018-2019 the PI and members of this project published 20 papers (SNIC resources are acknowledged) 1. Edström et al Elastic properties and plastic deformation of TiC- and VC-based pseudobinary alloys Acta Mater. 144, 376 (2018) 2. Sangiovanni et al Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands PhysRevB 97, 035406 (2018) 3. Sangiovanni Inherent toughness and fracture mechanisms of refractory transition- metal nitrides via density-functional molecular dynamics Acta Mater. 151, 11 (2018) 4. Sangiovanni Copper adatom, admolecule transport, and island nucleation on TiN(001) via ab initio molecular dynamics ApplSurfSci 450, 180 (2018) 5. Sangiovanni et al Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal-organic chemical vapor deposition of AlN on graphene PhysChemChemPhys 20, 17751 (2018) 6. Gambino et al Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles PhysRevB 98, 064105 (2018) 7. Ekholm et al Assessing the SCAN functional for itinerant electron ferromagnets PhysRevB 98, 094413 (2018) 8. Mosyagin et al Effect of dispersion corrections on ab initio predictions of graphite and diamond properties under pressure PhysRevB 98, 174103 (2018) 9. Almyras et al Semi-empirical force-field model for the Ti1–xAlxN (0 ≤ x ≤ 1) system Materials 12, 215 (2019) 10. Ferrari et al First-principles characterization of reversible martensitic transformations PhysRevB 99, 094107 (2019) 11. Jamnig et al Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates SciRep 9, 6640 (2019) 12. Sangiovanni et al Mass transport properties of quasiharmonic vs. anharmonic transition- metal nitrides Thin Solid Films 688, 137297 (2019) 13. Edström et al TiN film growth on misoriented TiN grains with simultaneous low-energy bombardment: Restructuring leading to epitaxy Thin Solid Films 688, 137380 (2019) 14. Kindlund et al A review of the intrinsic ductility and toughness of hard transition- metal nitride alloy thin films Thin Solid Films 688, 137479 (2019) 15. Ferrari et al Reconciling Experimental and Theoretical Data in the Structural Analysis of Ti–Ta Shape-Memory Alloys Shape Memory & Superelast. 5, 6 (2019) 16. Ferrari et al Phase transitions in titanium with an analytic bond-order potential Model. Simul. Mater. Sci. Eng. 27, 085008 (2019) 17. Ferrari et al Discovery of ω-free high-temperature Ti-Ta-Xshape memory alloysfrom first-principles calculations PhysRevMater 3, 103605 (2019) 18. Sangiovanni et al Superioniclike diffusion in an elemental crystal: bcc Titanium PhysRevLett 123, 105501 (2019) 19. Mei et al Adsorption-controlled growth and properties of epitaxial SnO films PhysRevMater 3, 105202 (2019) 20. Edström et al Mechanical properties of VMoNO as a function of oxygen concentration: Toward development of hard and tough refractory oxynitrides J Vac Sci Technol A 37, 061508 (2019)