FEM simulation for quantum experiments with mechanical resonators (compute)
Title: FEM simulation for quantum experiments with mechanical resonators (compute)
SNIC Project: SNIC 2020/7-47
Project Type: SNIC Small Compute
Principal Investigator: Witlef Wieczorek <witlef.wieczorek@chalmers.se>
Affiliation: Chalmers tekniska högskola
Duration: 2020-06-01 – 2021-06-01
Classification: 10302
Homepage: https://wieczorek-lab.com


This research project explores the control over mechanical motion down to the quantum regime. The project thereby follows two different physical approaches: coupling mechanical motion to light in so-called cavity optomechanical devices and using superconducting magnetic levitation as a means to reach ultra-low mechanical dissipation. The vision of the project is to develop quantum devices based on hybrid mechanical systems for quantum technologies such as quantum information processing or quantum-enhanced sensing. This project requires, in particular, precise simulation of different types of mechanical resonators, both chip-based clamped and levitated resonators. These simulations are based on the FEM software COMSOL. The simulations require precise meshing of the involved geometries and incorporate parameter sweeps over different quantities of interest, for example, dimensions of the involved structures or magnetic field strengths. This requires extensive computational efforts not available on local PCs. This project is the corresponding compute project application to the granted storage project entitled "FEM simulation for quantum experiments with mechanical resonators (storage)"