Computational Modelling of Novel Materials and Devices for Organic- and Bioelectronics and Energy Storage
Title: Computational Modelling of Novel Materials and Devices for Organic- and Bioelectronics and Energy Storage
DNr: SNIC 2019/2-7
Project Type: SNIC Large Compute
Principal Investigator: Igor Zozoulenko <igor.zozoulenko@liu.se>
Affiliation: Linköpings universitet
Duration: 2020-01-01 – 2021-01-01
Classification: 10304 10403 10406
Homepage: http://liu.se/loe
Keywords:

Abstract

Conducting conjugated polymers represent the material of choice for the majority of applications for organic- and bioelectronics. This is because many polymers have excellent thermal and air stability, high electrical conductivity, and well-developed and relatively simple synthesis technology that allows a large-scale manufacturing. They are also biocompatible and open for transport of biologically active ions. Recently, novel composite cellulose-polymer based materials demonstrated their potential for effective energy storage applications. Computational studies of these materials are in critical demand because the lack of theoretical understanding of their material properties represents the major obstacle for further improvement of the device performance and material functionality. The aim of the proposal is to perform Quantum-Mechanical and Molecular Dynamics studies of conducting polymers and composite cellulose materials, as well as to model devices based on these materials to answer fundamental questions concerning the electronic structure, morphology, polymerization and crystallization kinetics, porosity, ion diffusion, catalytic action, as well as to explore their potential for energy generation and storage. A crucial aspect of this project is that our research provides guidance to the experimental activities of the Laboratory of Organic Electronics at Linköping University. The present project is supported by multiple funding sources: Advanced Functional Material Center at Linköping University, Energimyndigheten (1 grant), Vetenskapsrådet (2 grants), KAW (Knut och Alice Wallenbergs Stiftelse, 2 grants), Peter Wallenbergs foundation, Troëdssons stiftelse, Åforsk, Wallenberg Wood Science Center, Treesearch, and others. The computational time is intended for the group of Theory and Modelling at the Laboratory of Organic Electronics which currently includes 12 members (1 professor, 1 associate professor, 7 postdocs, 3 PhD students), all of whom are heavily involved in large-scale calculations. Two more postdocs are expected to join the group during winter 2019/2020.