Solar Energy Conversion and Catalysis Calculations
Title: Solar Energy Conversion and Catalysis Calculations
DNr: SNIC 2018/3-498
Project Type: SNIC Medium Compute
Principal Investigator: Petter Persson <Petter.Persson@compchem.lu.se>
Affiliation: Lunds universitet
Duration: 2018-11-01 – 2020-02-01
Classification: 10407 10402 10403
Homepage: http://www.teokem.lu.se/people/seniors/persson/
Keywords:

Abstract

First principles calculations of molecules and materials will be conducted with a focus on advanced solar energy conversion processes, including dye-sensitized solar cells, artificial photosynthesis, and organic solar cells. The complexity of these systems, both in terms in molecular structure (supramolecular and nanostructured materials) and function (photoinduced processes involving excited states), makes it vital to use high-performance computing facilities for accurate computational studies. The ambition here is firstly to provide a better understanding of how solar energy conversion systems function on the molecular level, and secondly to use accurate calculations with predictive capability to guide the search for more efficient molecular components in such systems. We mainly use Density Functional Theory (DFT) and time-dependent DFT (TD-DFT) calculations, complemented with e.g. Reactive Force Field methods (ReaxFF) as well as high level ab initio methods such as multiconfigurational approaches. A. Excited States of Light-harvesting molecules Excited states of organic molecules, transition metal complexes, and polymers used for solar energy conversion applications will be studied quantum chemically using first principles (time-dependent DFT and multi-reference ab initio) methods. Focus areas include Investigations of excitation energies and potential energy surfaces (PESs) of low-lying excited singlet and triplet states of dye molecules and natural pigements to predict the structure of excited state deactivation pathways and charge-separation. B. Structural and Electronic Properties of Dye-Sensitized Nanocrystals The structure and stability of metal oxide nanocrystals, e.g. TiO2, will be investigated using a combination of quantum chemical structure optimizations and molecular dynamics simulations on realistic atomistic models in the 1 - 10 nm size range. Electronic properties, will be calculated e.g. at the DFT and TD-DFT levels of theory. Current interests also include III-V semiconducting nanocrystalline materials. B1. Structural stability of dye-nanocrystal interfaces: Study binding strengths of anchor groups, binding ligands, and dyes to metal oxide substrates. Investigate bi- and tri-podal anchors with large footprints from Galoppini. B2. Interfacial electronic structure: Investigate how to improve the energy matching of the ground and excited states of dyes to the substrate band structure in DSSCs . Suitable molecules e.g. organic polycyclic aromatic molecules and metal complexes have been selected for accurate calculations. B3. Surface electron transfer: Predict heterogeneous electron transfer (ET) rates from calculated interfacial electronic coupling strengths. Elucidate how the ET rate is influenced by various anchor and spacer groups. This requires use of larger cluster models, say (TiO2)n with n>100. C. Heterogeneous interfaces and catalysis A multi-scale combination of quantum chemical calculations and molecular dynamics simulations will be applied to studies of molecular functionalization of metal oxide substrates and heterogeneous catalysis on metal oxide substrates such as TiO2. D. A largely new direction (currently in a start-up phase) as part of the KAW-funded SOLA project concerns multi-scale of complex organic film morphologies and formation processes. This project continues and expands previous SNIC project on triolith and aurora (2017/1-405)